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Abstract

Faces often appear very small in surveillance imagery
because of the wide fields of view that are typically used
and the relatively large distance between the cameras and
the scene. For tasks such as face recognition, resolution en-
hancement techniques are therefore generally needed. Al-
though numerous resolution enhancement algorithms have
been proposed in the literature, most of them are limited by
the fact that they make weak, if any, assumptions about the
scene. We propose an algorithm to learn a prior on the spa-
tial distribution of the image gradient for frontal images of
faces. We proceed to show how such a prior can be incorpo-
rated into a resolution enhancement algorithm to yield 4–8
fold improvements in resolution (i.e. 16–64 times as many
pixels). The additional pixels are, in effect, hallucinated.

1. Introduction
Most approaches to resolution enhancement make weak

assumptions about the image(s). A common assumption is
that the images are Markov Random Fields [9, 14]. While
this assumption does aid resolution enhancement, it is a
generic assumption applicable to most images. The class of
images of human faces is a relatively small subset. It should
therefore be possible to develop algorithms specifically for
human faces that outperform these generic algorithms.

In Figure 1(a) we illustrate the Gaussian pyramid [3, 4]
of a fairly high resolution image of a face. In Figure 1(b)
we include a similar pyramid for a lower resolution image.
The second pyramid has been started at a higher level so
that the resolutions at theG2 level and above match. In this
setting, resolution enhancement can be posed as predicting
the lowest level of the Gaussian pyramidG0.

We propose an algorithm to learn the resolution enhance-
ment function, say fromG2 to G0, for frontal images of
faces. Specifically, we use a pyramid based algorithm to
learn a prior on the derivatives of the high resolution image
G0 as a function of the spatial location in the image, and the
information in the higher levels of the pyramid. This prior
is then incorporated into the function fromG2 toG0.

We demonstrate that our algorithm does learn to enhance
the resolution of faces, and in fact only faces. We also show
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(a) High Resolution Pyramid (b) Low Resolution Pyramid

Figure 1. (a) A Gaussian pyramid is created
by repeated smoothing and down-sampling.
(b) The pyramid of a lower resolution image.
Resolution enhancement can be formulated as
estimating the bottom level of the pyramid.

that it outperforms the cubic B-spline interpolation algo-
rithm by a wide margin. Our algorithm can enhance images
of faces which are barely detectable (12 � 16 pixels) by a
factor of8 in each direction (to give96�128 pixel images.)

1.1. Related Work

Freeman and Pasztor [8] recently proposed a learning
framework for low-level vision, one application of which is
image interpolation. They only applied their algorithms to
generic images however, and so have not obtained as good
results as we have. Our algorithm is closely related to the
“class-based” illumination normalization algorithm [13] in
this respect. Riklin-Raviv and Shashua showed that illumi-
nation normalization is possible for frontal images of faces,
where it is not possible for generic objects. Our algorithm
might therefore be called a class-based resolution enhance-
ment algorithm. Another major advantage of our approach
over [8] is that we are able to use multiple images from a
video stream, if available, as in traditional super-resolution.

A resolution enhancement algorithm for human faces is
proposed in [7]. As a face is tracked, the parameters of an
“active-appearance” model are estimated and used to pre-
dict what a high resolution version of the face would look
like. It is unlikely that such an algorithm could ever work
on images as small as12 � 16 pixels. Active appearance



models are based on the location of around 50 points on the
face. When the image itself only contains100-200 pixels,
the triangulated elements in the model essentially become
degenerate points.

As will be described in the next section, our approach
uses similar techniques to the super-resolution algorithms
of Schultz and Stevenson [15] and Hardieet al. [9], and the
multi-resolution texture synthesis algorithms of De Bonet
and Viola [5, 6] and Heeger and Bergen [10]. The applica-
tion to class-based enhancement is, of course, different.

2. Theory and Algorithms
2.1. Gaussian Pyramids

The Gaussian pyramid [3, 4] starting at levell = k of an
imageI is the set of imagesGk(I); Gk+1(I); : : : ; GN (I),
where:

Gl(I) =

�
I if l = k

REDUCE(Gl�1(I)) if k < l � N
(1)

and N is chosen so thatGN (I) is (smaller than) some
fixed size. The operator REDUCE(�) combines a (Gaus-
sian) smoothing step and a down-sampling step. The details
of this operator vary somewhat from author to author. We
found the performance of our algorithms to be largely inde-
pendent of the choice. We actually chose REDUCE(�) to be
the pixel averaging function:

REDUCE(I)(m;n) =
1

4

1X
i=0

1X
j=0

I(2�m+i; 2�n+j) (2)

because this definition is more consistent with image for-
mation as integration over the pixel. A “Gaussian” pyramid
computed using this definition is illustrated in Figure 1(a).

In terms of the Gaussian pyramid, a resolution enhance-
ment algorithm is a function fromGl(I) to G0(I) where
l > 0. Given a lower resolution image we can create a
Gaussian pyramid starting at a higher level. For example,
if the image is2k times smaller (in each direction), we start
at level l = k, as is illustrated in Figure 1(b) fork = 2.
Resolution enhancement then consists of estimatingG0(I).

2.2. Observation Model

We assume that the low resolution imageGk(I) actu-
ally captured by the camera is perturbed with additive i.i.d.
Gaussian noise�(m;n). We therefore have:

Gk(I)(m;n) =
X
(p;q)

W (m;n; p; q)G0(I)(p; q) + �(m;n):

(3)
Each low resolution pixelGk(I)(m;n) is the weighted sum
of the high resolution pixelsG0(I)(p; q) and the additive
noise�(m;n). The weightsW (�) relating the pixels are a
function of how much the low resolution pixels(m;n) and

the high resolution pixels(p; q) overlap. Using the defini-
tion of REDUCE(�) in Equation (2), an Expression forW (�)
can be derived:

W (m;n; p; q) =

8<
:

1
22k

if p 2 [m � 2k; (m+ 1) � 2k)
& q 2 [n � 2k; (n+ 1) � 2k)

0 Otherwise.
(4)

Equation (3) is an implicit expression for the unknown
high resolution imageG0(I) in terms of the known low
resolution imageGk(I). Equation (3) cannot be used to
solve directly for the unknown high resolution imageG0(I)
for two reasons: (1) the noise�(m;n) is unknown, and
(2) there are more unknowns inG0(I) than equations. One
common approach [9, 15] in this situation is to solve for the
maximuma posteriori(MAP) solution using Bayes Law.

2.3. Bayesian MAP Formulation

The maximuma posteriori(MAP) estimate of the high
resolution imageG0 is argmaxG0

Pr[G0 jGk]. Bayes law
for this estimation problem is:

Pr[G0 jGk] =
Pr[Gk jG0] � Pr[G0]

Pr[Gk]
: (5)

Since Pr[Gk] is a constant becauseGk is known already, and
since the logarithm function is a monotonically increasing
function, we have:argmaxG0

Pr[G0 jGk] =

argmin
G0

(� lnPr[Gk jG0]� lnPr[G0]) : (6)

The first term in this expression� lnPr[Gk jG0] is the (neg-
ative log) probability of getting the low resolution image
Gk, given that the high resolution image isG0. It depends
upon the distribution of the noise�. Since we assume that
the noise�(m;n) is i.i.d. and Gaussian, with covariance�2�,
we therefore have:� lnPr[Gk jG0] = C1+

1

2�2�

X
m;n

2
4Gk(m;n)�

X
(p;q)

W (m;n; p; q)G0(p; q)

3
5
2

(7)

whereC1 is a constant that only depends upon�2�. Hence
C1 can be ignored in Equation (6).

2.4. Predicting a Gradient Prior

We now discuss the prior term� lnPr[G0]. Schultz and
Stevenson [15] and Hardieet al. [9] both used Markov Ran-
dom Field priors in their super-resolution algorithms. We
wish to use a prior predicted from training samples.

Suppose we have a collection of high resolution training
images of human facesTi. We can compute their Gaussian
pyramidsG0(Ti); : : : ; GN (Ti). We can also compute their
Laplacian pyramidsL0(Ti); : : : ; LN (Ti) [4], the horizontal
H0(Ti); : : : ;HN (Ti) and verticalV0(Ti); : : : ; VN (Ti) first
derivatives of the Gaussian pyramids, and the horizontal



H2
0(Ti); : : : ;H

2
N (Ti) and verticalV 2

0 (Ti); : : : ; V
2
N (Ti) sec-

ond derivatives of the Gaussian pyramids. See [1] for more
details. We can then form a pyramid of feature vectors:

Fj(Ti) =
�
Lj(Ti);Hj(Ti); Vj(Ti);H

2
j (Ti); V

2
j (Ti)

�
(8)

for j = 0; : : : ; N .
Given a low resolution imageI that is2k times smaller

than the training samples, we can compute the Gaussian
pyramid from levelk and upwardsGk(I); : : : ; GN (I), as
is illustrated in Figure 1(b). Similarly, we can compute the
feature pyramids for those levelsFk(I); : : : ;FN (I). We
know nothing, however, about the lower levels of the fea-
ture pyramidF0(I); : : : ;Fk�1(I), and in particularF0(I).

To describe the algorithm we use to predictF0(I), we
need one further piece of notation. If(m;n) is a pixel in
the lth level of a pyramid, its parent at thel + 1th level is
(
�
m
2

�
;
�
n
2

�
). We therefore define the Parent Structure vec-

tor of a pixel(m;n) in thelth level to be:PSl(I)(m;n) =

�
Fl(I)(m;n); : : : ;FN (I)(

j m

2N�1

k
;
j n

2N�1

k
)
�
: (9)

We then use the following algorithm to predictF0(I). (We
use over-line to denote predicted values.)

Gradient Prior Prediction Algorithm

For each pixel(m;n) in the high resolution image to be
predictedG0(I), do:

1. Create space forF0(I)(m;n)

2. Findj = argminiPSk(I)(
jm
2k

k
;
j n
2k

k
)� PSk(Ti)(

jm
2k

k
;
j n
2k

k
)


3. CopyF0(Tj)(m;n) intoF0(I)(m;n).

The distance functionk�k is a weightedL2 norm. We found
the performance to be largely independent of the weights,
but eventually gave the derivative components half as much
weight as the Laplacian values and reduced the weight by a
factor of 2 for each increase in the pyramid level.

This algorithm is similar to the random texture synthesis
algorithm of De Bonet and Viola [5, 6]. One difference is
that it is deterministic. It chooses the most likely values for
the Parent Structure vector rather than randomly sampling
from a set of values. Another difference is that the decision
is spatially variant. At each pixel(m;n) the algorithm only
looks at the corresponding pixels in the training samples.

2.5. Incorporation in the MAP Framework

OnceF0(I) has been estimated, the horizontal and ver-
tical derivatives of the high resolution image (H0(I) and
V 0(I)) can be extracted from it. (See Equation (8).) The
derivatives ofG0 = G0(I) should equal these values. Para-
metric expressions forH0(G0) andV0(G0) can be derived

in terms of the unknown pixels in the high resolution im-
ageG0 = G0(I). We assume that the errors between the
predicted and actual derivatives are i.i.d. and Gaussian with
covariance�2

r
. Therefore we set:� lnPr[G0] = C2+

1
2�2
r

P
m;n

�
H0(G0)(m;n)�H0(I)(m;n)

�2
+ 1

2�2
r

P
m;n

�
V0(G0)(m;n) � V 0(I)(m;n)

�2
(10)

whereC2 is a constant that only depends upon�2
r

(and
therefore can be ignored.)

Note that� lnPr[G0] is a function ofGk(I) = I. This
is legitimate for the following reason. The Gradient Prior
Prediction algorithm divides the set of imagesI into a
collection of subclasses, based on the decisions made in
Step 2. If these subclasses are denotedKi, then Pr[G0] =P

i
Pr[G0 j I 2 Ki] �Pr[I 2 Ki]. OnceI is known, it can be

determined which subclass it is in. If this class isKk, then
the expression for Pr[G0] simplifies to Pr[G0 j I 2 Kk]. It
is really this function that is contained in Equation (10).

2.6. Optimization by Gradient Descent

The expressions for the unknown high resolution image
derivativesH0(G0)(m;n) andV0(G0)(m;n) are linear in
the unknown pixelsG0(I)(m;n). Equations (6), (7), and
(10) therefore form a weighted least squares problem in the
unknown high resolution image pixelsG0(I)(m;n). This
problem, however, can be very high dimensional. The num-
ber of unknowns is the number of pixels in the high resolu-
tion imageG0(I). Directly solving a linear system of such
size can prove problematic. We therefore used a gradient
descent algorithm using the standard diagonal approxima-
tion to the Hessian [12] to determine how large the step size
should be. Since the error function is quadratic, the algo-
rithm converges to the single global minimum.

3. Experimental Results
Our experiments were conducted with a subset of the

FERET data set [11] consisting of 596 images of 278 in-
dividuals (92 women and 186 men). The images (which are
all frontal) need to be aligned in the class-based approach
so we can assume that the same part of the face appears in
roughly the same part of the image [13]. This alignment
was performed by hand marking the location of 3 points;
the centers of the eyes and the lower tip of the nose. These
3 points define an affine warp [2], which was used to warp
the images into canonical96 � 128 pixel images. These
images were then down-sampled by pixel averaging to give
48� 64, 24� 32, and12� 16 pixel input images.

We used a “leave-one-out” methodology to test our al-
gorithm. Because this process is quite time consuming, we
used a test set of 100 images of 100 different individuals
rather than the entire training set. The test set was selected
at random from the training set. We also added 8 synthetic
variations of each image to the training set by translating
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Figure 2. (a) Validation that our hallucination algorithm learns how to enhance the resolution of faces,
and (b) only faces. (c) The robustness of our algorithm to additive pixel intensity noise.

it 8 times by a small amount. This step enhances the per-
formance of our algorithms slightly, although it is not vital.
Finally, note that due to lack of space the results contained
in this section a just a illustrative subset of those in [1].

3.1. Demonstration of Learning

Initially we consider the case of enhancing24�32 pixel
images fourfold to give96 � 128 pixel images. Our first
set of experiments are designed to show that our algorithm
does learn how to enhance the resolution. First we varied
the number of training samples. We graph the results in Fig-
ure 2(a). The average (RMS) pixel error is plotted against
the number of training samples. Two curves are plotted, one
for our face hallucination algorithm, and one for the cubic
B-spline algorithm [16]. As might be expected, our algo-
rithm does perform better than cubic B-spline interpolation,
which incorporates no knowledge of the type of image be-
ing used. The other important point to note is that, as ex-
pected, the performance of our algorithm does improve as
the number of training samples increases.

The results in Figure 2(a) are an average over the 100
images in the test set. To get an idea of the variation in the
results across the test set, we also plot in Figure 2(a) the
percentage of times that the hallucination algorithm does
worse than cubic B-spline. By around 5000 training sam-
ples, this percentage has dropped to almost zero. Therefore,
given enough training samples, we can be reasonably sure
that the hallucination algorithm will perform better than cu-
bic B-spline, and most of the time much better.

As further justification that our algorithm performs well
for any frontal face image, in Figure 3 we present the results
for both the best and worst performing images in the 100
image test set (by RMS error). As can be seen, there is little
qualitative variation in the performance between these two
images. Also note how the hallucinated image in the second
column is much higher resolution than the input in the first,
and also how it contains much more high resolution detail
than the cubic B-spline result in the third column.

In Figure 2(b) we present similar results for images that
do not contain faces. For comparison across different types
of image, we plot the relative RMS pixel error compared to

the cubic B-spline algorithm, instead of plotting the abso-
lute RMS pixel error itself. We plot curves of the relative
RMS pixel error for faces, random images, and 50 miscel-
laneous images from an image database (mostly consisting
of images of outdoor scenes.) We find that the hallucination
algorithm is an improvement only for faces. For random
images there is little difference, and for the miscellaneous
image set the hallucination algorithm actually does worse.

3.2. Robustness to Additive Noise

Next we investigated how robust the performance is in
the presence of additive intensity noise. The results are
presented in Figure 2(c). We ran exactly the same exper-
iments as in Figure 2(a), but before applying our algorithm
we added Gaussian noise with various standard deviations
to the down-sampled images. For standard deviation 0.0 the
results are the same, however in Figure 2(c) we plot the rel-
ative RMS pixel error rather than the absolute value. We
also plot curves for standard deviations of2:0, 4:0, 8:0, and
16:0 grey levels. The results show that for standard devia-
tions up to around 4.0–8.0 the performance is relatively un-
affected by the noise, but around standard deviation 16.0 the
performance drops off very quickly. Hence, our algorithm
is reasonably robust to this type of noise. It can tolerate 2-
3 bits of noise without much degradation in performance.
Images similar to those in Figure 3 validate this result [1].

3.3. Multiple Image Results

We now present results for multiple12 � 16 pixel im-
ages. In the traditional super-resolution manner [9, 15] we
assume that we have a video of the face. Hence, multiple
slightly translated images are available. We simulate this
using the FERET database by randomly translating the orig-
inal FERET images multiple times by sub-pixel amounts to
form the inputs. In Section 2 we described our algorithms
in terms of a single image. Extending them to allow mul-
tiple slightly translated images is straightforward [1]. Mul-
tiple copies of Equations (7) and (10) are needed, one for
each input image. These equations also need to be modified
slightly to allow for the relative translations of the images.
Otherwise the formulation stays essentially the same.

The results are included in Figure 4. The input consists



(a) Input24� 32 (b) Hallucinated (c) Cubic B-spline (d) Original96� 128

(e) Input24� 32 (f) Hallucinated (g) Cubic B-spline (h) Original96� 128

Figure 3. The best (a){(d) and worst (e)-(h) results in Figure 2(a) in terms of the RMS pixel error.

of 3 versions of the12� 16 pixel image in the leftmost col-
umn, translated by random sub-pixel amounts. The inputs
are aligned using a standard parametric motion algorithm
[2] and then the multiple image hallucination algorithm [1]
applied. The results in the second column are a huge im-
provement over both cubic B-spline interpolation and the
Schultz and Stevenson algorithm [15]. In particular, note
how high resolution features such as the eyebrows and lips
are recovered, even though there is little evidence for them
in the input. Also try squinting at the images, a standard test
of enhancement quality. Unlike the results in [8], a marked
difference can be seen between the input and the output.

4. Discussion
We have presented an algorithm to predict a gradient

prior and shown how to incorporate this prior into a reso-
lution enhancement algorithm. We have shown our algo-
rithms to be a huge improvement over existing interpola-
tion and super-resolution algorithms. A small number of
12 � 16 pixel images of a human face can be fused into a
single96�128 pixel image that closely resembles the orig-
inal face. The one factor that most contributes to the high
performance is that the algorithms are class-based [13].

4.1. Recognition Vs. Enhancement

We have not had time to demonstrate that our algorithms
improve face recognition performance. Although we leave
this task as future work, we would like to mention a couple
of points. No new information has been added during res-
olution enhancement. Theoretically, therefore, face recog-
nition algorithms could be developed that work as well on
the low resolution images, as they do on the output of our

hallucination algorithm. What, then, is the utility of our ap-
proach? (1) Our algorithms should make the development
of low resolution face recognition algorithms easier since
researchers will not have to worry about the additional com-
plications introduced by the low resolution images. (2) Our
algorithms are useful for humans. If someone were shown
Figures 4(a) and (b) and asked whether they had seen the
person before, they would be much more confident in their
response when shown the96� 128 pixel image.

There is a great deal in common between resolution (and
illumination) enhancement and recognition. First, our ap-
proach works using a form of recognition. A discrete recog-
nition decision is made in Step 2. of the gradient prediction
algorithm to determine which of the training samples looks
most like the input at the low resolution. In a way, a local
feature detector is applied, and how the resolution is en-
hanced depends upon which feature is detected. (Edwards
et al. [7] use a related approach.) At the other extreme, a
face recognition algorithm could be used for enhancement.
If the person can be recognized from the low resolution
data, the image can be enhanced by looking up the person in
the database. The major difference between these extremes
is the “scale” at which the recognition decision is made.

4.2. Future Work

All of our results are on hand-registered images from the
FERET data set [11]. To show our approach is useful in real
surveillance scenarios, we need to try out our algorithms on
data captured using surveillance cameras. To build an auto-
matic system we will also need to implement face tracking,
pose estimation, and feature localization algorithms.

The learning algorithm at the heart of our approach is a



(a) Input12 � 16 (b) Hallucinated (c) Cubic B-Spline (d) Schultz & Stevenson (e) Hi-Resolution

(f) Input 12� 16 (g) Hallucinated (h) Cubic B-Spline (i) Schultz & Stevenson (j) Hi-Resolution

Figure 4. Selected results for multiple 12 x 16 pixel images. The input consists of 3 versions of the image
in the leftmost column, translated by random sub-pixel amounts. Note how high frequency features such
as the eyes are reconstructed even though there almost no evidence for them in the input.

nearest neighbor algorithm. Many other learning algorithms
could be used instead. We would like to perform a system-
atic comparison of these techniques. We would also like
to explore the use of different feature spaces. (See Equa-
tion (8).) In particular, one of the most interesting questions
is how “local” the features should be.
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